_

fenicsx-beat#

Cardiac electrophysiology simulator in FEniCSx

Install#

You can install the library with pip

python3 -m pip install fenicsx-beat

or with conda

conda install -c conda-forge fenicsx-beat

Note that installing with pip requires FEniCSx already installed

Getting started#

The following minimal example demonstrates simulating the Monodomain model on a unit square domain using a modified FitzHugh-Nagumo model

import shutil

import matplotlib.pyplot as plt
import numpy as np

from mpi4py import MPI
import dolfinx
import ufl

import beat

# MPI communicator
comm = MPI.COMM_WORLD
# Create mesh
mesh = dolfinx.mesh.create_unit_square(comm, 32, 32, dolfinx.cpp.mesh.CellType.triangle)
# Create a variable for time
time = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0))


# Define forward euler scheme for solving the ODEs
# This just needs to be a function that takes the current time, states, parameters and dt
# and returns the new states
def fitzhughnagumo_forward_euler(t, states, parameters, dt):
    s, v = states
    (
        c_1,
        c_2,
        c_3,
        a,
        b,
        v_amp,
        v_rest,
        v_peak,
        stim_amplitude,
        stim_duration,
        stim_start,
    ) = parameters
    i_app = np.where(
        np.logical_and(t > stim_start, t < stim_start + stim_duration),
        stim_amplitude,
        0,
    )
    values = np.zeros_like(states)

    ds_dt = b * (-c_3 * s + (v - v_rest))
    values[0] = ds_dt * dt + s

    v_th = v_amp * a + v_rest
    I = -s * (c_2 / v_amp) * (v - v_rest) + (
        ((c_1 / v_amp**2) * (v - v_rest)) * (v - v_th)
    ) * (-v + v_peak)
    dV_dt = I + i_app
    values[1] = v + dV_dt * dt
    return values


# Define space for the ODEs
ode_space = dolfinx.fem.functionspace(mesh, ("P", 1))

# Define parameters for the ODEs
a = 0.13
b = 0.013
c1 = 0.26
c2 = 0.1
c3 = 1.0
v_peak = 40.0
v_rest = -85.0
stim_amplitude = 100.0
stim_duration = 1
stim_start = 0.0

# Collect the parameter in a numpy array
parameters = np.array(
    [
        c1,
        c2,
        c3,
        a,
        b,
        v_peak - v_rest,
        v_rest,
        v_peak,
        stim_amplitude,
        stim_duration,
        stim_start,
    ],
    dtype=np.float64,
)

# Define the initial states
init_states = np.array([0.0, -85], dtype=np.float64)
# Specify the index of state for the membrane potential
# which will also inform the PDE solver later
v_index = 1

# We can also check that the solution of the ODE
# by solving a the ODE for a single cell
times = np.arange(0.0, 1000.0, 0.1)
values = np.zeros((len(times), 2))
values[0, :] = np.array([0.0, -85.0])
for i, t in enumerate(times[1:]):
    values[i + 1, :] = fitzhughnagumo_forward_euler(t, values[i, :], parameters, dt=0.1)


fig, ax = plt.subplots()
ax.plot(times, values[:, v_index])
ax.set_xlabel("Time")
ax.set_ylabel("States")
ax.legend()
fig.savefig("ode_solution.png")


# Now we set external stimulus to zero for ODE
parameters[-3] = 0.0

# and create stimulus for PDE
stim_expr = ufl.conditional(ufl.And(ufl.ge(time, 0.0), ufl.le(time, 0.5)), 600.0, 0.0)
stim_marker = 1
cells = dolfinx.mesh.locate_entities(
    mesh, mesh.topology.dim, lambda x: np.logical_and(x[0] <= 0.5, x[1] <= 0.5)
)
stim_tags = dolfinx.mesh.meshtags(
    mesh,
    mesh.topology.dim,
    cells,
    np.full(len(cells), stim_marker, dtype=np.int32),
)
dx = ufl.Measure("dx", domain=mesh, subdomain_data=stim_tags)
I_s = beat.Stimulus(expr=stim_expr, dZ=dx, marker=stim_marker)

# Create PDE model
pde = beat.MonodomainModel(time=time, mesh=mesh, M=0.001, I_s=I_s, dx=dx)

# Next we create the PDE solver where we make sure to
# pass the variable for the membrane potential from the PDE
ode = beat.odesolver.DolfinODESolver(
    v_ode=dolfinx.fem.Function(ode_space),
    v_pde=pde.state,
    fun=fitzhughnagumo_forward_euler,
    init_states=init_states,
    parameters=parameters,
    num_states=len(init_states),
    v_index=1,
)

# Combine PDE and ODE solver
solver = beat.MonodomainSplittingSolver(pde=pde, ode=ode)

# Now we setup file for saving results
# First remove any existing files
shutil.rmtree("voltage.bp", ignore_errors=True)

vtx = dolfinx.io.VTXWriter(mesh.comm, "voltage.bp", [pde.state], engine="BP5")
vtx.write(0.0)

# Finally we run the simulation for 400 ms using a time step of 0.01 ms
T = 400.0
t = 0.0
dt = 0.01
i = 0
while t < T:
    v = solver.pde.state.x.array
    solver.step((t, t + dt))
    t += dt
    if i % 500 == 0:
        vtx.write(t)
    i += 1

vtx.close()

_ _

See more examples in the documentation

License#

MIT

Need help or having issues#

Please submit an issue