from __future__ import annotations
import logging
import basix
import dolfinx
import dolfinx.fem.petsc
import numpy as np
import ufl
logger = logging.getLogger(__name__)
[docs]
def local_project(
v: dolfinx.fem.Function,
V: dolfinx.fem.FunctionSpace,
u: dolfinx.fem.Function | None = None,
) -> dolfinx.fem.Function | None:
"""Element-wise projection using LocalSolver
Parameters
----------
v : dolfinx.fem.Function
Function to be projected
V : dolfinx.fem.FunctionSpace
Function space to project into
u : dolfinx.fem.Function | None, optional
Optional function to save the projected function, by default None
Returns
-------
dolfinx.fem.Function | None
The projected function
"""
if u is None:
U = dolfinx.fem.Function(V)
else:
U = u
if v.x.array.size == U.x.array.size:
U.x.array[:] = v.x.array[:]
return U
expr = dolfinx.fem.Expression(v, V.element.interpolation_points())
U.interpolate(expr)
return U
[docs]
def parse_element(space_string: str, mesh: dolfinx.mesh.Mesh, dim: int) -> basix.ufl._ElementBase:
"""
Parse a string representation of a basix element family
"""
family_str, degree_str = space_string.split("_")
kwargs = {"degree": int(degree_str), "cell": mesh.ufl_cell().cellname()}
if dim > 1:
if family_str in ["Quadrature", "Q", "Quad"]:
kwargs["value_shape"] = (dim,)
else:
kwargs["shape"] = (dim,)
if family_str in ["Lagrange", "P", "CG"]:
el = basix.ufl.element(family=basix.ElementFamily.P, discontinuous=False, **kwargs)
elif family_str in ["Discontinuous Lagrange", "DG", "dP"]:
el = basix.ufl.element(family=basix.ElementFamily.P, discontinuous=True, **kwargs)
elif family_str in ["Quadrature", "Q", "Quad"]:
el = basix.ufl.quadrature_element(scheme="default", **kwargs)
else:
families = list(basix.ElementFamily.__members__.keys())
msg = f"Unknown element family: {family_str}, available families: {families}"
raise ValueError(msg)
return el
[docs]
def space_from_string(
space_string: str,
mesh: dolfinx.mesh.Mesh,
dim: int = 1,
) -> dolfinx.fem.functionspace:
"""
Constructed a finite elements space from a string
representation of the space
Arguments
---------
space_string : str
A string on the form {family}_{degree} which
determines the space. Example 'Lagrange_1'.
mesh : df.Mesh
The mesh
dim : int
1 for scalar space, 3 for vector space.
Returns
-------
df.FunctionSpace
The function space
"""
el = parse_element(space_string, mesh, dim)
return dolfinx.fem.functionspace(mesh, el)
[docs]
def expand_layer(
V: dolfinx.fem.FunctionSpace,
ft: dolfinx.mesh.MeshTags,
endo_marker: int,
epi_marker: int,
endo_size: float,
epi_size: float,
output_mid_marker: int = 0,
output_endo_marker: int = 1,
output_epi_marker: int = 2,
) -> dolfinx.fem.Function:
"""Expand the endo and epi markers to the rest of the mesh
with a given size
Parameters
----------
V : dolfinx.fem.FunctionSpace
The function space for your return function
ft : dolfinx.mesh.MeshTags
The facet tags
endo_marker : int
The endocardium marker
epi_marker : int
The epicardium marker
endo_size : float
The endocardium size
epi_size : float
The epicardium size
output_mid_marker : int, optional
The marker to be set for the midwall, by default 0
output_endo_marker : int, optional
The marker to be set for the endocardium, by default 1
output_epi_marker : int, optional
The marker to be set for the epicardium, by default 2
Returns
-------
dolfinx.fem.Function
The expanded markers as a function in ``V``
"""
logger.info("Expanding endo and epi markers to the rest of the mesh")
logger.debug(
f"endo_marker: {endo_marker}, epi_marker: {epi_marker}\n"
f"endo_size: {endo_size}, epi_size: {epi_size}\n"
f"Output markers: endo: {output_endo_marker}, "
f"epi: {output_epi_marker} mid: {output_mid_marker}",
)
# Find the rest of the laplace solutions
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
mesh = V.mesh
a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx(domain=mesh)
L = v * dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0)) * ufl.dx(domain=mesh)
u_endo = dolfinx.fem.Function(V)
u_endo.x.array[:] = 0
u_epi = dolfinx.fem.Function(V)
u_epi.x.array[:] = 1
endo_dofs = dolfinx.fem.locate_dofs_topological(V, ft.dim, ft.find(endo_marker))
epi_dofs = dolfinx.fem.locate_dofs_topological(V, ft.dim, ft.find(epi_marker))
# Apply Dirichlet BC on the outer boundary
bcs = [
dolfinx.fem.dirichletbc(0.0, endo_dofs, V),
dolfinx.fem.dirichletbc(1.0, epi_dofs, V),
]
problem = dolfinx.fem.petsc.LinearProblem(
a,
L,
bcs=bcs,
# form_compiler_options=form_compiler_options,
# jit_options=jit_options,
petsc_options={
"ksp_type": "cg",
"pc_type": "hypre",
"pc_hypre_type": "boomeramg",
"ksp_norm_type": "unpreconditioned",
"ksp_atol": 1e-15,
"ksp_rtol": 1e-10,
"ksp_max_it": 10_000,
"ksp_error_if_not_converged": False,
},
)
uh = problem.solve()
arr = uh.x.array.copy()
uh.x.array[:] = output_mid_marker
uh.x.array[arr <= endo_size] = output_endo_marker
uh.x.array[arr >= 1 - epi_size] = output_epi_marker
uh.name = "endo_epi"
with dolfinx.io.XDMFFile(mesh.comm, "endo_epi_lv.xdmf", "w") as xdmf:
xdmf.write_mesh(mesh)
xdmf.write_function(uh)
return uh
[docs]
def expand_layer_biv(
V: dolfinx.fem.FunctionSpace,
ft: dolfinx.mesh.MeshTags,
endo_lv_marker: int,
endo_rv_marker: int,
epi_marker: int,
endo_size: float,
epi_size: float,
output_mid_marker: int = 0,
output_endo_marker: int = 1,
output_epi_marker: int = 2,
) -> dolfinx.fem.Function:
"""Expand the endo and epi markers to the rest of the mesh
with a given size
Parameters
----------
V : dolfinx.fem.FunctionSpace
The function space for your return function
ft : dolfinx.mesh.MeshTags
The facet tags
endo_lv_marker : int
The LV endocardium marker
endo_rv_marker : int
The LV endocardium marker
epi_marker : int
The epicardium marker
endo_size : float
The endocardium size
epi_size : float
The epicardium size
output_mid_marker : int, optional
The marker to be set for the midwall, by default 0
output_endo_marker : int, optional
The marker to be set for the endocardium, by default 1
output_epi_marker : int, optional
The marker to be set for the epicardium, by default 2
Returns
-------
dolfinx.fem.Function
The expanded markers as a function in ``V``
"""
logger.info("Expanding endo and epi markers to the rest of the mesh")
logger.debug(
f"endo_lv_marker: {endo_lv_marker}, "
f"endo_rv_marker: {endo_rv_marker}, "
f"epi_marker: {epi_marker}\n"
f"endo_size: {endo_size}, epi_size: {epi_size}\n"
f"Output markers: endo: {output_endo_marker}, "
f"epi: {output_epi_marker} mid: {output_mid_marker}",
)
# Find the rest of the laplace solutions
petsc_options = {
"ksp_type": "cg",
"pc_type": "hypre",
"pc_hypre_type": "boomeramg",
"ksp_norm_type": "unpreconditioned",
"ksp_atol": 1e-15,
"ksp_rtol": 1e-10,
"ksp_max_it": 10_000,
"ksp_error_if_not_converged": False,
}
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
mesh = V.mesh
a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx(domain=mesh)
L = v * dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0)) * ufl.dx(domain=mesh)
u_endo = dolfinx.fem.Function(V)
u_endo.x.array[:] = 0
u_epi = dolfinx.fem.Function(V)
u_epi.x.array[:] = 1
endo_lv_dofs = dolfinx.fem.locate_dofs_topological(V, ft.dim, ft.find(endo_lv_marker))
endo_rv_dofs = dolfinx.fem.locate_dofs_topological(V, ft.dim, ft.find(endo_rv_marker))
epi_dofs = dolfinx.fem.locate_dofs_topological(V, ft.dim, ft.find(epi_marker))
lv_problem = dolfinx.fem.petsc.LinearProblem(
a,
L,
bcs=[
dolfinx.fem.dirichletbc(0.0, endo_lv_dofs, V),
dolfinx.fem.dirichletbc(1.0, epi_dofs, V),
],
petsc_options=petsc_options,
)
uh_lv = lv_problem.solve()
rv_problem = dolfinx.fem.petsc.LinearProblem(
a,
L,
bcs=[
dolfinx.fem.dirichletbc(0.0, endo_rv_dofs, V),
dolfinx.fem.dirichletbc(1.0, epi_dofs, V),
],
petsc_options=petsc_options,
)
uh_rv = rv_problem.solve()
# In BiV we have have one epi and two endo solutions
# We take the minimum of the two endo solutions
arr = np.min([uh_rv.x.array, uh_lv.x.array], axis=0)
uh_rv.x.array[:] = output_mid_marker
uh_rv.x.array[arr <= endo_size] = output_endo_marker
uh_rv.x.array[arr >= 1 - epi_size] = output_epi_marker
uh_rv.name = "endo_epi"
with dolfinx.io.XDMFFile(mesh.comm, "endo_epi_biv.xdmf", "w") as xdmf:
xdmf.write_mesh(mesh)
xdmf.write_function(uh_rv)
return uh_rv